TRIM_MEAN
The TRIM_MEAN node is based on a numpy or scipy function.The description of that function is as follows:
Return the mean of an array after trimming distribution from both tails.
If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores.
The input is sorted before slicing.
Slices off less if proportion results in a non-integer slice index (i.e. conservatively slices off 'proportiontocut').Params:a : array_likeInput array.proportiontocut : floatFraction to cut off of both tails of the distribution.axis : intAxis along which the trimmed means are computed.
Default is 0.
If None, compute over the whole array 'a'.Returns:out : DataContainertype 'ordered pair', 'scalar', or 'matrix'
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
from collections import namedtuple
from typing import Literal
import scipy.stats
@flojoy
def TRIM_MEAN(
default: OrderedPair | Matrix,
proportiontocut: float = 0.1,
axis: int = 0,
) -> OrderedPair | Matrix | Scalar:
"""The TRIM_MEAN node is based on a numpy or scipy function.
The description of that function is as follows:
Return the mean of an array after trimming distribution from both tails.
If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores.
The input is sorted before slicing.
Slices off less if proportion results in a non-integer slice index (i.e. conservatively slices off 'proportiontocut').
Parameters
----------
a : array_like
Input array.
proportiontocut : float
Fraction to cut off of both tails of the distribution.
axis : int, optional
Axis along which the trimmed means are computed.
Default is 0.
If None, compute over the whole array 'a'.
Returns
-------
DataContainer
type 'ordered pair', 'scalar', or 'matrix'
"""
result = scipy.stats.trim_mean(
a=default.y,
proportiontocut=proportiontocut,
axis=axis,
)
if isinstance(result, np.ndarray):
result = OrderedPair(x=default.x, y=result)
else:
assert isinstance(
result, np.number | float | int
), f"Expected np.number, float or int for result, got {type(result)}"
result = Scalar(c=float(result))
return result