GAUSS_SPLINE
The GAUSS_SPLINE node is based on a numpy or scipy function.The description of that function is as follows:
Gaussian approximation to B-spline basis function of order n.Params:x : array_likeA knot vector.n : intThe order of the spline. Must be non-negative, i.e. n >= 0.Returns:out : DataContainertype 'ordered pair', 'scalar', or 'matrix'
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
from collections import namedtuple
from typing import Literal
import scipy.signal
@flojoy
def GAUSS_SPLINE(
default: OrderedPair | Matrix,
n: int = 2,
) -> OrderedPair | Matrix | Scalar:
"""The GAUSS_SPLINE node is based on a numpy or scipy function.
The description of that function is as follows:
Gaussian approximation to B-spline basis function of order n.
Parameters
----------
x : array_like
A knot vector.
n : int
The order of the spline. Must be non-negative, i.e. n >= 0.
Returns
-------
DataContainer
type 'ordered pair', 'scalar', or 'matrix'
"""
result = scipy.signal.gauss_spline(
x=default.y,
n=n,
)
if isinstance(result, np.ndarray):
result = OrderedPair(x=default.x, y=result)
else:
assert isinstance(
result, np.number | float | int
), f"Expected np.number, float or int for result, got {type(result)}"
result = Scalar(c=float(result))
return result