DETREND
The DETREND node is based on a numpy or scipy function.The description of that function is as follows:
Remove a linear trend along an axis from data.Params:data : array_likeThe input data.axis : intThe axis along which to detrend the data.
By default this is the last axis (-1).type : {'linear', 'constant'}The type of detrending. If type == 'linear' (default),
the result of a linear least-squares fit to 'data' is subtracted from 'data'.
If type == 'constant', only the mean of 'data' is subtracted.bp : array_like of intsA sequence of break points. If given, an individual linear fit is
performed for each part of 'data' between two break points.
Break points are specified as indices into 'data'.
This parameter only has an effect when type == 'linear'.overwrite_data : boolIf True, perform in place detrending and avoid a copy.
Default is False.Returns:out : DataContainertype 'ordered pair', 'scalar', or 'matrix'
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
from collections import namedtuple
from typing import Literal
import scipy.signal
@flojoy
def DETREND(
default: OrderedPair | Matrix,
axis: int = -1,
type: str = "linear",
bp: int = 0,
overwrite_data: bool = False,
) -> OrderedPair | Matrix | Scalar:
"""The DETREND node is based on a numpy or scipy function.
The description of that function is as follows:
Remove a linear trend along an axis from data.
Parameters
----------
data : array_like
The input data.
axis : int, optional
The axis along which to detrend the data.
By default this is the last axis (-1).
type : {'linear', 'constant'}, optional
The type of detrending. If type == 'linear' (default),
the result of a linear least-squares fit to 'data' is subtracted from 'data'.
If type == 'constant', only the mean of 'data' is subtracted.
bp : array_like of ints, optional
A sequence of break points. If given, an individual linear fit is
performed for each part of 'data' between two break points.
Break points are specified as indices into 'data'.
This parameter only has an effect when type == 'linear'.
overwrite_data : bool, optional
If True, perform in place detrending and avoid a copy.
Default is False.
Returns
-------
DataContainer
type 'ordered pair', 'scalar', or 'matrix'
"""
result = scipy.signal.detrend(
data=default.y,
axis=axis,
type=type,
bp=bp,
overwrite_data=overwrite_data,
)
if isinstance(result, np.ndarray):
result = OrderedPair(x=default.x, y=result)
else:
assert isinstance(
result, np.number | float | int
), f"Expected np.number, float or int for result, got {type(result)}"
result = Scalar(c=float(result))
return result