Skip to content

COMPOSITE

The COMPOSITE node creates a combination of Plotly visualizations for a given input data container.Inputs ------ primary_trace : OrderedPair|DataFrame|Matrix|Vector the DataContainer to be visualized as the first figure secondary_trace : OrderedPair|DataFrame|Matrix|Vector the DataContainer to be visualized as the second figureParams:first_figure : 'bar' | 'line' | 'histogram' | 'scatter'plotly type to display as the first figure, default is 'scatter'second_figure : 'bar' | 'line' | 'histogram' | 'scatter'plotly type to display as the second figure, default is 'line'Returns:out : Plotlythe DataContainer containing Plotly visualization of both figures
Python Code
from flojoy import flojoy, OrderedPair, DataFrame, Matrix, Plotly, Vector
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from blocks.DATA.VISUALIZATION.template import plot_layout
from typing import Literal


@flojoy
def COMPOSITE(
    primary_trace: OrderedPair | DataFrame | Matrix | Vector,
    secondary_trace: OrderedPair | DataFrame | Matrix | Vector,
    first_figure: Literal["bar", "line", "histogram", "scatter"] = "scatter",
    second_figure: Literal["bar", "line", "histogram", "scatter"] = "line",
) -> Plotly:
    """The COMPOSITE node creates a combination of Plotly visualizations for a given input data container.

    Inputs
    ------
    primary_trace : OrderedPair|DataFrame|Matrix|Vector
        the DataContainer to be visualized as the first figure

    secondary_trace : OrderedPair|DataFrame|Matrix|Vector
        the DataContainer to be visualized as the second figure

    Parameters
    ----------
    first_figure : 'bar' | 'line' | 'histogram' | 'scatter'
        plotly type to display as the first figure, default is 'scatter'
    second_figure : 'bar' | 'line' | 'histogram' | 'scatter'
        plotly type to display as the second figure, default is 'line'

    Returns
    -------
    Plotly
        the DataContainer containing Plotly visualization of both figures
    """

    layout = plot_layout(title="COMPOSITE")
    fig = go.Figure(layout=layout)
    match_figure(fig, first_figure, primary_trace)
    match_figure(fig, second_figure, secondary_trace)

    fig.update_layout(dict(autosize=True, height=None, width=None))
    return Plotly(fig=fig)


def match_figure(
    fig: go.Figure,
    figure_type: Literal["bar", "line", "histogram", "scatter"],
    dc: OrderedPair | Matrix | DataFrame | Vector,
):
    match figure_type:
        case "bar":
            add_bar_trace(fig, dc)
        case "histogram":
            add_histogram_trace(fig, dc)
        case "line":
            add_line_trace(fig, dc)
        case "scatter":
            add_scatter_trace(fig, dc)


def add_bar_trace(fig: go.Figure, dc: OrderedPair | Matrix | DataFrame | Vector):
    match dc:
        case DataFrame():
            df = dc.m
            first_col = df.iloc[:, 0]
            is_timeseries = False
            if is_timeseries:
                for col in df.columns:
                    if col != df.columns[0]:
                        fig.add_trace(go.Bar(y=df[col].values, x=first_col, name=col))
                fig.update_layout(xaxis_title=df.columns[0])
            else:
                for col in df.columns:
                    if df[col].dtype == "object":
                        counts = df[col].value_counts()
                        fig.add_trace(
                            go.Bar(
                                x=counts.index.tolist(),
                                y=counts.tolist(),
                                name=col,
                            )
                        )
                    else:
                        fig.add_trace(go.Bar(x=df.index, y=df[col], name=col))
                fig.update_layout(xaxis_title="DF index", yaxis_title="Y Axis")
        case OrderedPair():
            x = dc.x
            if isinstance(dc.x, dict):
                dict_keys = list(dc.x.keys())
                x = dc.x[dict_keys[0]]
            y = dc.y
            fig.add_trace(go.Bar(x=x, y=y))
        case Matrix():
            m = dc.m
            num_rows, num_cols = m.shape
            x_ticks = np.arange(num_cols)

            for i in range(num_rows):
                fig.add_trace(go.Bar(x=x_ticks, y=m[i, :], name=f"Row {i+1}"))
            fig.update_layout(xaxis_title="Column", yaxis_title="Value")
        case Vector():
            y = dc.v
            x = np.arange(len(y))
            fig.add_trace(go.Bar(x=x, y=y))


def add_histogram_trace(fig: go.Figure, dc: OrderedPair | Matrix | DataFrame | Vector):
    match dc:
        case DataFrame():
            df = dc.m
            for col in df.columns:
                fig.add_trace(go.Histogram(x=df[col], name=col))
            fig.update_layout(xaxis_title="Value", yaxis_title="Frequency")
        case OrderedPair():
            y = dc.y
            fig.add_trace(go.Histogram(x=y))
        case Matrix():
            m = dc.m
            histogram_trace = go.Histogram(x=m.flatten())
            fig.add_trace(histogram_trace)
        case Vector():
            y = dc.v
            fig.add_trace(go.Histogram(x=y))


def add_line_trace(fig: go.Figure, dc: OrderedPair | Matrix | DataFrame | Vector):
    match dc:
        case DataFrame():
            df = dc.m
            first_col = df.iloc[:, 0]
            is_timeseries = False
            if pd.api.types.is_datetime64_any_dtype(first_col):
                is_timeseries = True
            if is_timeseries:
                for col in df.columns:
                    if col != df.columns[0]:
                        fig.add_trace(
                            go.Scatter(
                                y=df[col].values,
                                x=first_col,
                                mode="lines",
                                name=col,
                            )
                        )
            else:
                for col in df.columns:
                    fig.add_trace(
                        go.Scatter(
                            y=df[col].values,
                            x=df.index,
                            mode="lines",
                            name=col,
                        )
                    )
        case OrderedPair():
            x = dc.x
            if isinstance(dc.x, dict):
                dict_keys = list(dc.x.keys())
                x = dc.x[dict_keys[0]]
            y = dc.y
            fig.add_trace(go.Scatter(x=x, y=y, mode="lines"))
        case Matrix():
            m = dc.m
            num_rows, num_cols = m.shape
            x_ticks = np.arange(num_cols)
            for i in range(num_rows):
                fig.add_trace(
                    go.Scatter(x=x_ticks, y=m[i, :], name=f"Row {i+1}", mode="lines")
                )
            fig.update_layout(xaxis_title="Column", yaxis_title="Value")
        case Vector():
            y = dc.v
            x = np.arange(len(y))
            fig.add_trace(go.Scatter(x=x, y=y, mode="lines"))


def add_scatter_trace(fig: go.Figure, dc: OrderedPair | Matrix | DataFrame | Vector):
    match dc:
        case OrderedPair():
            x = dc.x
            if isinstance(dc.x, dict):
                dict_keys = list(dc.x.keys())
                x = dc.x[dict_keys[0]]
            y = dc.y
            fig.add_trace(go.Scatter(x=x, y=y, mode="markers", marker=dict(size=4)))
        case DataFrame():
            df = dc.m
            first_col = df.iloc[:, 0]
            is_timeseries = False
            if pd.api.types.is_datetime64_any_dtype(first_col):
                is_timeseries = True
            if is_timeseries:
                for col in df.columns:
                    if col != df.columns[0]:
                        fig.add_trace(
                            go.Scatter(x=first_col, y=df[col], mode="markers", name=col)
                        )
            else:
                for col in df.columns:
                    fig.add_trace(
                        go.Scatter(x=df.index, y=df[col], mode="markers", name=col)
                    )
        case Matrix():
            m = dc.m
            num_rows, num_cols = m.shape
            x_ticks = np.arange(num_cols)
            for i in range(num_rows):
                fig.add_trace(
                    go.Scatter(x=x_ticks, y=m[i, :], name=f"Row {i+1}", mode="markers")
                )

            fig.update_layout(xaxis_title="Column", yaxis_title="Value")
        case Vector():
            y = dc.v
            x = np.arange(len(y))
            fig.add_trace(go.Scatter(x=x, y=y, mode="markers", marker=dict(size=4)))

Find this Flojoy Block on GitHub

Example

Having problem with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example we’re simulating data from ‘LINSPACE’, ‘PLOTLY_DATASET’ and visualizing them with COMPOSITE node which creates a Plotly combination of visualizations depending on user’s choice from line, bar, histogram, scatter for two inputs required by the node.